Какие газы выделяются при горении. Энергия топлива. Удельная теплота сгорания. Описание процессов горения

1.6. ПРОДУКТЫ ГОРЕНИЯ

Продукты горения – это газообразные, жидкие или твердые вещества, образующиеся в процессе горения. Состав продуктов сгорания зависит от состава горящего вещества и от условий его горения. Органические и неорганические горючие вещества состоят, главным образом, из углерода, кислорода, водорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при температуре горения и образовывать продукты горения: СО, CO 2 , SO 2 , P 2 O 5 . Азот при температуре горения не окисляется и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. Все указанные продукты сгорания (за исключение окиси углерода СО) гореть в дальнейшем больше не способны. Они образуются при полном сгорании, то есть при горении, которое протекает при доступе достаточного количества воздуха и при высокой температуре.

При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные химические соединения. Они получаются при частичном окислении как самого горючего, так и продуктов его сухой перегонки (пиролиза). Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала. Рассмотрим кратко свойства основных продуктов горения.

Углекислый газ

Углекислый газ или двуокись углерода (СО 2) – продукт полного горения углерода. Не имеет запаха и цвета. Плотность его по отношению к воздуху = 1.52. Плотность углекислого газа при температуре Т = 0 0 С и при нормальном давлении р = 760 миллиметров ртутного столба (мм Hg ) равна 1.96 кг/м 3 (плотность воздуха при этих же условиях равна ρ = 1.29 кг/м 3). Углекислый газ хорошо растворим в воде (при Т = 15 0 С в одном литре воды растворяется один литр газа). Углекислый газ не поддерживает горение веществ, за исключением щелочных и щелочно-земельных металлов. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

CO 2 +2 Mg = C + 2 MgO .

Токсичность углекислого газа незначительна. Концентрация углекислого газа в воздухе 1.5% безвредна для человека длительное время. При концентрации углекислого газа в воздухе, превышающей 3-4.5%, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни. При температуре Т = 0 0 С и давлении р = 3,6 МПа углекислый газ переходит в жидкое состояние. Температура кипения жидкой углекислоты составляет Т = –78 0 С. При быстром испарении жидкой углекислоты газ охлаждается и переходит в твердое состояние. Как в жидком, так и твердом состоянии, капли и порошки углекислоты применяются для тушения пожаров.

Оксид углерода

Оксид углерода или угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен. Относительная плотность = 0.97. Плотность угарного газа при Т = 0 0 С и р = 760 мм Hg составляет 1.25 кг/м 3 . Этот газ легче воздуха и скапливается в верхней части помещения при пожарах. В воде оксид углерода почти не растворяется. Способен гореть и с воздухом образует взрывчатые смеси. Угарный газ при горении дает пламя синего цвета. Угарный газ является очень токсичным. Вдыхание воздуха с концентрацией угарного газа 0.4% смертельно для человека. Стандартные противогазы от угарного газа не защищают, поэтому при пожарах применяются специальные фильтры или кислородные изолирующие приборы.

Сернистый газ

Сернистый газ (SO 2 ) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом. Относительная плотность сернистого газа = 2.25. Плотность этого газа при Т = 0 0 С и р = 760 мм Hg составляет 2.9 кг/м 3 , то есть он намного тяжелее воздуха. Сернистый газ хорошо растворяется в воде, например, при температуре Т = 0 0 С в одном литре воды растворяется восемьдесят литров SO 2 , а при Т = 20 0 С – сорок литров. Сернистый газ горение не поддерживает. Действует раздражающим образом на слизистые оболочки дыхательных путей, вследствие чего является очень токсичным.

Дым

При горении многих веществ, кроме рассмотренных выше продуктов сгорания выделяется дым – дисперсная система, состоящая из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе. Диаметр частиц дыма составляет 10 -4 –10 -6 см (от 1 до 0.01 мкм). Отметим, что 1 мкм (микрон) равен 10 -6 м или 10 -4 см. Более крупные твердые частицы, образующиеся при горении, быстро оседают в виде копоти и сажи. При горении органических веществ дым содержит твердые частицы сажи, взвешенные в CO 2 , CO , N 2 , SO 2 и других газах. В зависимости от состава и условий горения вещества получаются различные по составу и по цвету дымы. При горении дерева, например, образуется серовато-черный дым, ткани – бурый дым, нефтепродуктов – черный дым, фосфора – белый дым, бумаги, соломы – беловато-желтый дым.

На многих семинарах, особенно на тех, где в основном были новички в области пенополиуретанов, практически все задавали вопрос о горючести пенополиуретана и его вредности. И каждый раз нам приходилось людям объяснять, что при возгорании жилого дома или другого объекта, начинает гореть не утеплитель, который находиться в стенах или снаружи, а одежда, бумага, линолеум, краска, бытовая техника и тд. После долгих размышлений, я решил написать статью, какие продукты наиболее опасны при горении дома.

Начнем, я думаю с материалов, из которых состоит одежда, шторы, ковры и тд. В большинстве случаев растительные (натуральные) волокна , к которым относятся хлопок, джут, пенька, лен и сизаль, состоят главным образом из целлюлозы. Хлопок и другие волокна горючи (температура самовоспламенения волокон хлопка 400°С). Их горение сопровождается выделением дыма и теплоты, двуокиси углерода, окиси углерода и воды. Растительные волокна не плавятся.

Синтетические текстильные материалы - это ткани, изготовленные полностью или в основном из синтетических волокон. К ним относятся вискоза, ацетат, нейлон, полиэстер, акрил. Пожарную опасность, связанную с синтетическими волокнами, часто трудно оценить, так как некоторые из них при нагревании дают усадку, плавятся и стекают. Основные газы, образующиеся при горении, это двуокись углерода, окись углерода и водяной пар.

Растительные волокна , например джут, выделяют при горении большое количество едкого плотного дыма.

При горении шерсти появляется густой серовато-коричневый дым, а также при этом образуется цианистый водород, который является весьма токсичным газом. При обугливании шерсти получается липкое черное вещество, напоминающее деготь.

Продуктом сгорания шелка является пористый уголь, смешанный с золой, который продолжает тлеть или гореть только в условиях сильной тяги. Тление сопровождается выделением светло-серого дыма, вызывающего раздражение дыхательных путей. В определенных условиях при горении шелка может выделяться цианистый водород.

Далее перейдем к пластмассам и резинам . Горящие пластмассы и резины выделяют газы, теплоту, пламя и дым, при этом образуются продукты сгорания, воздействие которых может привести к интоксикации или смерти. При горении пластмасс, содержащих хлор, например поливинилхлорида, который является изоляционным материалом кабелей, основным продуктом сгорания является хлористый водород, имеющий едкий раздражающий запах. Вдыхание хлористого водорода может вызвать смерть.

Горящая резина выделяет плотный черный жирный дым, содержащий два токсичных газа - сероводород и двуокись серы. Оба газа опасны, так как в определенных условиях вдыхание их может привести к смерти.

Также дома у нас есть много изделий из дерева : паркет, столы, стулья, кухонные гарнитуры и тд. При горении древесины и древесных материалов образуется водяной пар, теплота, двуокись и окись углерода. Основную опасность для людей представляют недостаток кислорода и присутствие окиси углерода. Кроме того, при горении древесины образуются альдегиды, кислоты и различные газы. Эти вещества сами по себе или в сочетании с водяным паром могут, как минимум, оказывать сильное раздражающее воздействие.

В итоге после того как практически все сгорело мы дошли до утеплителя. Чем мы в основном утепляем дома? Как правило, 50% домов утеплены минеральной ватой, 30% пенополистиролом, 10% пенополиуретаном и 10% иными утеплителями или ничем.

Минеральная вата

Потенциальная опасность минераловатных теплоизоляционных изделий как источника канцерогенных факторов - пыли и фенолформальдегидных смол - послужила основанием для многих исследований воздействия её на человека и животных. Так, например, в декабре 1997 года Европейским союзом была опубликована директива, классифицирующая различные сорта минеральной ваты по степени опасности. Согласно этой директиве, минеральная вата рассматривалась, как раздражающее вещество (ирритант); к 2-й группе (потенциально опасно) или 3-й группе (недостаточно данных для надёжной оценки) группе канцерогенной опасности её относили в зависимости от содержания оксидов щелочных и щелочноземельных металлов и размера волокон. Весьма жёсткий подход по оценке опасности искусственных минеральных волокон принят в Германии; здесь запрещены многие виды минеральных волокон, в других странах рассматриваются как безопасные; что вызывает серьёзное беспокойство производителей.

Международное агентство по изучению рака (МАИР) в 2001 году подготовило доклад об оценке канцерогенности искусственных минеральных волокон, согласно которому стеклянная (из непрерывного стекловолокна), каменная и шлаковая вата отнесены к группе 3 по степени опасности (для МВ из этих материалов отсутствуют достаточные доказательства канцерогенности для человека, а свидетельства в пользу канцерогенности для животных ограничены). В то же время МВ, изготовленная из огнеупорных керамических волокон и из некоторых видов прерывного стекловолокна, отнесена к группе 2B по степени опасности (для этих типов минеральной ваты существуют обоснованные данные, подтверждающие канцерогенность для животных).

Чтобы понять, из чего же состоит минеральная вата и стекловата, рассмотрим усредненный состав:

Усредненный состав для производства минеральной ваты и стекловаты

Минеральная вата, конечно, не горит, но при высоких температурах, имеет свойство тлеть и выделять те продукты, из которых она состоит. Может минеральная вата не так опасна при горении по сравнению с другими материалами, зато она вредна при долговременной эксплуатации.

Пенополистирол

Высокотемпературная фаза деструкции пенополистирола начинается при температуре +160°С (механохимическая деструкция). С повышением температуры до +200°С начинается фаза термоокислительной деструкции. Свыше +260оС преобладают процессы термической деструкции и деполимеризации. В связи с тем, что теплота полимеризации полистирола и поли-"""α"""-метилстирола одни из самых низких среди всех полимеров (71 и 39 кДж/моль соответственно), в процессах их деструкции преобладает деполимеризация до исходного мономера - стирола. А как известно стирол как мономер, очень вреден для человеческого здоровья. Также как и при горении любого полимера будет выделяться углекислый газ и угарный газ. В принципе по сравнению с многими полимерами, пенополистирол не так вреден. Но согласно исследованиям пенополистирол выделяет очень много дыма.

А если учитывать что теплопроводность пенополистирола к примеру с пенополиуретаном выше на 25%, значит его нужно на 25% толще, чтобы достигнуть нужных нормативов при строительстве. Значит он будет выделять еще на 25% больше дыма.

Пенополиуретан

При горении пенополиуретана выделяется вода, углекислый и угарный газы, окись азота, также в зависимости от марки пенополиуретана возможно образование синильной кислоты. Из результатов исследований следует, что основной токсический компонент продуктов сгорания пенополиуретана на всех этапах пожара, и при низких, и при высоких температурах, это угарный газ.

Замечено, что синильная кислота и окись азота, как правило, образуются при сгорании органических соединений, которые содержат азот, таких, как шерсть, кожа, синтетические ткани. Помимо этого, при горении любых органических материалов, выделяется угарный газ. Пенополиуретан, если сравнивать с другими материалами органического происхождения, выделяет токсичные продукты при воздействии более высокой температуры.

Синильная кислота же, при 700°С определяется лишь следами, но, уже при 850°С её концентрация в воздухе возрастает примерно в 28 раз, а при 1000°С – в 50 раз, достигая заметного уровня лишь в этих условиях.

Оценивая пожароопасность пенополиуретана, можно отметить, что этот материал имеет известные преимущества, по сравнению с другими горючими материалами, которые применяются в строительстве.

Первое – из-за небольшой плотности, количество горящего материала объёмом соответственно меньше. Второе – низкая теплопроводность и присущая ему мелкоячеистая структура будет препятствовать прогреву материала во внутренних слоях, поэтому термическое разложение пенополиуретана происходит лишь в поверхностном слое. Третье – время самостоятельного горения этого материала, весьма мало (менее 10 сек.), а процесса тления после попадания, например, кусочков раскалившегося шлака, капель расплавленного металла, искры и т.д. попросту не происходит.

Выводы:

Итак, практически все горит, плавится, а если нет, тогда деструктирует и выделяет различные токсичные вещества. Человечество еще не придумало идеального утеплителя или материала, который не приносит ни какого вреда человеку. Поэтому при выборе утеплителя, надо для себя решить каким основным критериям он должен соответствовать: низкий коэффициент теплопроводности, класс горючести, низкий уровень дымовыделения, приемлемый уровень токсичности и т.д. Критериев множество. Можно вообще не утеплять, тогда придется разориться и сделать очень толстые стены и то это может не помочь. Но, как известно, гореть начинает не утеплитель, а то, что находиться внутри дома, поэтому эта мера не принесет ожидаемой пользы. Вы даже можете посмотреть пожарную статистику и вы не найдете не одного пожара связанного с возгоранием утеплителя. По моему мнению, нужно утепляться, а какими материалами это уже должен определить каждый сам для себя. Если люди так переживают за свой дом, тогда нужно делать хорошую пожарную сигнализацию, а еще лучше устанавливать автоматические системы пожаротушения, которые смогут потушить или задержать пожар до приезда пожарных.

Вконтакте

Q 2 =570,6 кДж

Q 3 =392,9 кДж

Поскольку начальные и конечные продукты в обоих случаях одинаковы, их общие тепловые эффекты согласно закону, равны, то есть

Q 1 +Q сг =Q 2 +Q 3

или Q сг =Q 2 +Q 3 -Q 1 =570,6+392,9-74,8=888,7 кДж

Согласно закону Гесса Г.Г. теплота сгорания химического вещества (или смеси) равна разности между суммой теплот образования продуктов сгорания и теплотой образования сгоревшего вещества (или веществ, составляющих горючую смесь).

Теплотой образования называется тепловой эффект, получающийся при образовании одного моля вещества из свободных элементов в стандартных условиях. За стандартне условия принимают температуру 25°С и давление 1 атм . всех веществ, участвующих в реакции. Теплоту образования химических веществ определяют по термохимическим таблицам . Теплота образования продуктов сгорания:

½ = 94,5 ккал/моль

½ =26,4 ккал/моль

½ = 57,7 ккал/моль

Следует отметить, что теплота образования простых веществ ( и др.) принимается равной нулю.

Пример. Определить теплоту сгорания углерода (С).

Решение. 1. Составляем уравнение реакции горения углерода, принимая в уравнении (1.33) значения величин а=1, b=c=d=0.

2. Находим теплоту образования углекислого газа и углерода С. Согласно приведённым выше пояснениям

½ = 94,5 ккал/моль, ½ =0

3. Определяем теплоту сгорания углерода

Теплоту сгорания различных веществ определяют также экспериментально в калориметрической бомбе и газовом калориметре.

Различают высшую и низшую теплоты сгорания. Принято считать, что высшая теплота сгорания больше низшей на величину испарения влаги, находящейся в продуктах сгорания. Более строгое определение , приведено, например, в .

Высшей теплотой сгорания называют количество тепла, выделяемое при полном сгорании единицы массы горючего вещества при условии, что содержащийся в нём водород сгорает с образованием жидкой воды (при конденсации водяного пара). Низшей теплотой сгорания называется количество тепла, выделяемое аналогично при полном сгорании единицы массы горючего вещества при условии сгорания водорода до образования водяного пара и испарении влаги горючего вещества.

При задании элементного состава твёрдого или жидкого горючего вещества в весовых (массовых) процентах для определения и рекомендуется использовать формулы Д.И. Менделеева :

где и - высшая и низшая теплоты сгорания, ;

[C ], [H ], [O ], [S ], W – содержание в горючем веществе углерода, водорода, кислорода, серы и влаги, % .

Пример. Определить низшую теплоту сгорания сернистого мазута, в состав которого входят углерод (82,5%), водород (10,65%), сера (3,1%), кислород (0,5%), влага (3%), зола (0,25%).

Решение. Искомую теплоту сгорания вычисляем по второй формуле (1.34)

Существует низший предел теплоты сгорания, ниже которого вещества становятся не способными к горению в атмосфере воздуха. Вещества являются негорючими, если они не относятся к взрывоопасным и если их теплота сгорания не превышает 2,1 .

Следует отметить, что в расчетах выделения тепла в условиях реальных пожаров за величину теплоты сгорания принимается , так как образующийся при сгорании водяной пар уходит в атмосферу, не конденсируясь в воду.

Известно, что при пожарах многие вещества и материалы горят с обра-зованием значительного количества сажи. Сажа (углерод) способна само-стоятельно гореть и выделять тепло. Следовательно, если при горении она образуется, то горючее вещество выделяет тепла меньше, происходит так называемый недожог. Для веществ, богатых углеродом (нефть, мазут, рубероид, бензол и др.) коэффициент недожога составляет , при горении древесины =0,85 .

Взрыв – процесс освобождения больщого количества энергии в ограниченном объеме за короткий промежуток времени. В результате взрыва вещество, заполняющее объем, превращается в сильно нагретый газ и при этом происходит резкое изменение давления в среде, что сопровождается образованием ударной (взрывной) волны.

Взрывоопасную среду могут образовать:

Смеси газов, паров, пылей с воздухом и другими окислителями (кислород, озон, хлор, окислы азота и др.) ;

а также ВВ.

Вещества, склонные к взрывному превращению (ацетилен, озон, гидразин и др.);

Источником инициирования взрыва являются:

Открытое пламя, горящие и раскаленные тела;

Электрические разряды;

Тепловые проявления химических реакций и механических

воздействий;

Искры от удара и трения;

Ударные волны;

Электромагнитные и другие излучения.

«Классическая» форма ударной волны при взрыве заряда взрывчатого вещества в воздухе приведена на рис. 1.

При подходе ударной волны к некоторой точке пространства давление, плотность и другие гидродинамические элементы в этой точке скачком возрастают. Затем следует постепенное изменение этих величин, причем через некоторый промежуток времени давление и плотность в данной точке пространства становятся меньше, чем те же параметры в невозмущенной среде. Постепенно падает скорость движения частиц, затем меняя свое направление.

Эпюра ударной волны

1- фаза сжатия, 2- фаза разрежения

Таким образом, эпюра ударной волны включает области положительных и отрицательных избыточных давлений. Передняя граница сжатой области называется фронтом ударной волны, а сама область – фазой сжатия. За фазой сжатия следует фаза разрежения. Разность ,где -атмосферное давление, называется избыточным давлением во фронте ударной волны, время -длительностью фазы сжатия, время - длительностью фазы разрежения. Воздух в фазе сжатия движется в сторону распространения фронта, в фазе разрежения – в противоположном направлении.

Площадь, ограниченную эпюрой давления в фазе сжатия, называют импульсом давления в фазе сжатия ,

где - избыточное давление в фазе сжатия.

Установлено, что толщина фронта ударной волны определяется величиной порядка длины свободного пробега молекулы () см .

Взрывы происходят: - при химических реакциях (горение);

При электрических разрядах;

При ядерных реакциях деления и синтеза;

При разгерметизации емкостей под давлением.

В производственных условиях потенциальными взрывоопасными объектами являются – склады ЛВЖ, СУГ, ВВ, нефтепродуктов; элеваторы зерна; мукомольные комбинаты (мучная пыль); газопроводы; транспортные средства по перевозке (ж/д, авто и др.) СУГ, нефтепродуктов, химических веществ, ВВ; химические и фармацевтические производства и др.

Опасные факторы пожара (ГОСТ 12.1.004-96)

К опасным факторам пожара, воздействующим на людей и имущество, относятся:

1) пламя и искры;

Тепловой поток;

3) повышенная температура окружающей среды;

4) повышенная концентрация токсичных продуктов горения и термического разложения;

5) пониженная концентрация кислорода;

6) снижение видимости в дыму.

2. К сопутствующим проявлениям опасных факторов пожара относятся:

1) осколки, части разрушившихся зданий, сооружений, строений, транспортных средств, технологических установок, оборудования, агрегатов, изделий и иного имущества;

2) радиоактивные и токсичные вещества и материалы, попавшие в окружающую среду из разрушенных технологических установок, оборудования, агрегатов, изделий и иного имущества;

3) вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества;

5) воздействие огнетушащих веществ.

Опасные факторы взрыва, происшедшего вследствие пожара (ГОСТ 12.1.010-76)

1.8. Опасными и вредными факторами, воздействующими на работающих в результате взрыва, являются:

- ударная волна , во фронте которой давление превышает допустимое значение;

Обрушивающиеся конструкции, оборудование, коммуникации, здания и сооружения и их разлетающиеся части;

Образовавшиеся при взрыве и (или) выделившиеся из поврежденного оборудования вредные вещества, содержание которых в воздухе рабочей зоны превышает предельно допустимые концентрации.

1. Допустимые параметры пожарной и взрывной опасности

(ГОСТ 12.3.047-96)

Значения допустимых параметров пожарной и взрывнойопасности должны быть такими, чтобы исключить гибель людей и ограничить распространение аварии за пределы рассматриваемого технологического процесса на другие объекты, включая опасные производства.

Таблица 1- Предельно допустимое избыточное давление при сгорании газо-, паро- или пылевоздушных смесей в помещениях или в открытом пространстве

Таблица 2- Предельно допустимая интенсивность теплового излучения пожаров приливов ЛВЖ и ГЖ

Степень поражения Интенсивность теплового излучения, кВт/м 2
Без негативных последствий в течение длительного времени 1,4
Безопасно для человека в брезентовой одежде 4,2
Непереносимая боль через 20-30 с Ожог 1-й степени через 15-20 с Ожог 2-й степени через 30-40 с Воспламенение хлопка-волокна через 15 мин 7,0
Непереносимая боль через 3-5 с Ожог 1-й степени через 6-8 с Ожог 2-й степени через 12-16 с 10,5
Воспламенение древесины с шероховатой поверхностью (влажность 12 %) при длительности облучения 15 мин 12,9
Воспламенение древесины, окрашенной масляной краской по строганой поверхности; воспламенение фанеры 17,0

Таблица 3- Предельно допустимая доза теплового излучения при воздействии “огненного шара” на человека

Сгорание

Горение - это сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Приближенно можно описать природу горения как бурно идущее окисление.

Горение подразделяется на тепловое и цепное . В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях .

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации .
Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме , когда основные характеристики процесса - скорость реакции , мощность тепловыделения, температура и состав продуктов - не изменяются во времени, либо в периодическом режиме , когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Теория горения

Описание процессов горения

Важность процесса горения в технических устройствах способствовала созданию различных моделей, позволяющих с необходимой точностью его описывать. Так называемое нулевое приближение включает описание химических реакций, изменение температуры, давления и состава реагентов во времени без изменения их массы. Оно соответствует процессам происходящим в закрытом объёме, в который была помещена горючая смесь и нагрета выше температуры воспламенения. Одно-, двух- и трёхмерные модели уже включает в себя перемещение реагентов в пространстве. Количество измерений соответствует количеству пространственных координат в модели. Режим горения бывает как и газодинамическое течение: ламинарным или турбулентным. Одномерное описанное ламинарного горения позволяет получить аналитически важные выводы о фронте горения, которые затем используются в более сложных турбулентных моделях.

Объёмное горение

Объемное горение происходит, например, в теплоизолированном реакторе идеального перемешивания, в который поступает при температуре Т 0 исходная смесь с относительным содержанием горючего а 0 ; при другой температуре горения реактор покидает смесь с иным относительным содержанием горючего а . При полном расходе G через реактор условия баланса энтальпии смеси и содержания горючего при стационарном режиме горения могут быть записаны уравнениями:

  1. G(Qa 0 + CT 0) = G(Qa + CT)
  2. Ga 0 - Ga = w(a, T)V

где w(а, Т) - скорость реакции горения, V - объём реактора. Используя выражение для термодинамической температуры Т Г , можно из (1) получить:

а = а 0 (Т Г - Т)/(Т Г - Т 0)

и записать (2) в виде:

q - T = q + T

где q - T = GC(T - Т 0) - скорость отвода тепла из реактора с продуктами сгорания, q + T = Qw(a, Т)V - скорость выделения тепла при реакции. Для реакции n -ного порядка с энергией активации:

Диффузионное горение

Характеризуется раздельным подачей в зону горения горючего и окислителя. Перемешивани комонентов происходит в зоне горения. Пример: горение водорода и кислорода в ракетном двигателе .

Горение предварительно смешанной среды

Как следует из названия, горения происходит в смеси, в которой одновременно присутсвуют горючее и окислитель. Пример: горение в цилиндре двигателя внутреннего сгорания бензиново-воздушной смеси после инициализации процесса свечой зажигания.

Особенности горения в различных средах

Беспламенное горение

В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени , возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора , например, окисление этанола на платиновой черни .

Тление

Вид горения, при котором пламя не образуется, а зона горения медленно распространяется по материалу. Тление обычно наблюдается у пористых или волокнистых материалов с высоким содержанием воздуха или пропитанных окислителями .

Автогенное горение

Самоподдерживающиеся горение. Термин используется в технологиях сжигания отходов . Возможность автогенного (самоподдерживающегося) горения отходов определяется предельным содержанием балластирующих компонент: влаги и золы. На основе многолетних исследований шведский ученый Таннер предложил для определения границ автогенного горения использовать треугольник-схему с предельными значениями: горючих более 25%, влаги менее 50%, золы менее 60%.

Тестовые очаги горения

Тестовый очаг пожара - устройство, предназначенное для горения строго определенных материалов, обеспечивающих заданные параметры среды в стандартном испытательном помещении.

Обозначение ТП Тип горения Интенсивность тепловыделения Восходящий поток Дым Описание время срабатывания извещателя, не более, с.
ТП-1 Открытое горение древесины Высокая Сильный Есть При испытаниях используют 70 деревянных брусков (бук, сосна, ель, осина) размерами 10×20×250 мм каждый, уложенных в 7 слоев на основании размерами 500×500 мм. Перед испытаниями деревянные бруски высушивают. Источником воспламенения горючего материала является (5 ± 1) мл спирта или иного вида легковоспламеняющейся жидкости, налитой в емкость диаметром (50 ± 5) мм, установленную в центре основания тестового очага. Поджог осуществляют открытым пламенем или высоковольтным искровым разрядом. 370
ТП-2 Пиролизное тление древесины Очень незначительная Слабый Есть При проведении испытаний в качестве горючего материала используется 10 высушенных деревянных (бук , сосна , ель , осина) брусков размерами 75×25×20 мм, расположенных на поверхности электрической плиты мощностью не менее 1 кВт. При проведении испытаний напряжение, подаваемое на электроплиту, должно обеспечивать подъем температуры на поверхности плиты до 600 °С за не более 660 с. Контроль температуры на поверхности плиты осуществляют термопарой. 840
ТП-3 Тление со свечением хлопка Очень незначительная Очень слабый Есть При проведении испытаний используют хлопковые фитили длиной (800 ± 10) мм и массой примерно 3 г каждый, прикрепленные к проволочному кольцу диаметром (100 ± 5) мм, подвешенному на штативе таким образом, чтобы расстояние от нижнего края фитилей до основания штатива не превышало 50 мм. Количество фитилей - не менее 80. Тление фитилей достигается следующим образом: собранные в пучок концы фитилей поджигают открытым пламенем, затем пламя задувают до появления тления, сопровождающегося свечением. 750
ТП-4 Горение полимерных материалов Высокая Сильный Есть При испытаниях используют три мата из пенополиуретана плотностью 20 кг/м3 и размерами 500×500×20 мм каждый, уложенные один на другой на поддоне из алюминиевой фольги размерами 540×540×20 мм (допуск на размеры и плотность - 5 %). Перед испытаниями пенополиуретановые маты должны быть выдержаны в течение 48 ч при влажности не более 50 %. Источником воспламенения горючего материала является (5 ± 1) мл спирта или иного вида легковоспламеняющейся жидкости, налитой в емкость диаметром (50 ± 5) мм, установленную в центре основания тестового очага. Поджог осуществляют открытым пламенем или высоковольтным искровым разрядом. 180
ТП-5 Горение легковоспла-
меняющейся жидкости с выделением дыма
Высокая Сильный Есть При испытаниях используют (650 ± 20) г смеси Н-гептана, налитого в поддон из листовой стали толщиной 2 мм размерами 330×330×50 мм (допуск на размеры - 5 %). 240
ТП-6 Горение легковоспла-
меняющейся жидкости
Высокая Сильный Нет При испытаниях используют (2000 ± 100) г этилового
Loading...Loading...