Взаимодействие между магнетизмом и светом: эффект фарадея. Презентация на тему "эффект фарадея" Использование эффект Фарадея

Эффект Фарадея

Эффект Фарадея (продольный электрооптический эффект Фарадея) - магнитооптический эффект, который заключается в том, что при распространении линейно поляризованного света через оптически неактивное вещество, находящееся в магнитном поле , наблюдается вращение плоскости поляризации света. Теоретически, эффект Фарадея может проявляться и в вакууме в магнитных полях порядка 10 11 -10 12 Гс.

Феноменологическое объяснение

Проходящее через изотропную среду линейно поляризованное излучение всегда может быть представлено как суперпозиция двух право- и левополяризованных волн с противоположным направлением вращения. Во внешнем магнитном поле показатели преломления для циркулярно право- и левополяризованного света становятся различными ( и ). Вследствие этого, при прохождении через среду (вдоль силовых линий магнитного поля) линейно поляризованного излучения его циркулярно лево- и правополяризованные составляющие распространяются с разными фазовыми скоростями , приобретая разность хода, линейно зависящую от оптической длины пути. В результате плоскость поляризации линейно поляризованного монохроматического света с длиной волны , прошедшего в среде путь , поворачивается на угол

.

В области не очень сильных магнитных полей разность линейно зависит от напряжённости магнитного поля и в общем виде угол фарадеевского вращения описывается соотношением

,

где - постоянная Верде , коэффициент пропорциональности, который зависит от свойств вещества, длины волны излучения и температуры .

Элементарное объяснение

Эффект Фарадея тесно связан с эффектом Зеемана , заключающимся в расщеплении уровней энергии атомов в магнитном поле. При этом переходы между расщеплёнными уровнями происходят с испусканием фотонов правой и левой поляризации, что приводит к различным показателям преломления и коэффициентам поглощения для волн различной поляризации. Грубо говоря, различие скоростей различно поляризованных волн обусловлено различием длин волн поглощаемого и переизлучаемого фотонов.

Строгое описание эффекта Фарадея проводится в рамках квантовой механики.

Применение эффекта

Используется в лазерных гироскопах и другой лазерной измерительной технике и в системах связи.

История

Данный эффект был обнаружен М. Фарадеем в 1845 году .

Первоначальное объяснение эффекта Фарадея дал Д. Максвелл в своей работе «Избранные сочинения по теории электромагнитного поля», где он рассматривает вращательную природу магнетизма . Опираясь в том числе на работы профессора У. Томсона , который подчеркивал, что причиной магнитного действия на свет должно быть реальное(а не воображаемое) вращение в магнитном поле, Максвелл рассматривает намагниченную среду как совокупность «молекулярных магнитных вихрей». Теория, считающая электрические токи линейными, а магнитные силы вращательными явлениями, согласуется в этом смысле с теориями Ампера и Вебера. Исследование, проведенное Д. К. Максвеллом приводит к заключению, что единственное действие, которое вращение вихрей оказывает на свет, состоит в том, что плоскость поляризации начинает вращаться в том же направлении, что и вихри, на угол, пропорциональный:

  • толщине вещества
  • составляющей магнитной силы параллельной лучу
  • показателю преломления луча
  • обратно пропорциональный квадрату длины волны в воздухе
  • среднему радиусу магнитных вихрей
  • емкости магнитной индукции (магнитной проницаемости)

Все положения «теории молекулярных вихрей» Д. Максвелл доказывает математически строго, подразумевая, что все явления природы в глубинной сути своей аналогичны, и действуют похожим образом.

Многие положения данной работы были впоследствии забыты или не поняты (например, Герцем), однако известные на сегодняшний день уравнения для электромагнитного поля выведены были Д. Максвеллом из логических посылок указанной теории.

Австрийский физик-теоретик Л. Больцман в примечаниях к работе Д. Максвелла отзывался следующим образом:

Я мог бы сказать, что последователи Максвелла в этих уравнениях, пожалуй, ничего кроме букв не переменили… Результаты переведенного здесь цикла работ, следовательно, должны быть причислены к важнейшим достижениям физической теории"

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Эффект Фарадея" в других словарях:

    эффект Фарадея - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Faraday effect … Справочник технического переводчика

    эффект Фарадея - Faradėjaus reiškinys statusas T sritis fizika atitikmenys: angl. Faraday effect vok. Faraday Effekt, m rus. эффект Фарадея, m; явление Фарадея, n pranc. effet Faraday, m … Fizikos terminų žodynas

    эффект Фарадея - Faradėjaus reiškinys statusas T sritis Standartizacija ir metrologija apibrėžtis Tiesiai poliarizuotos šviesos, sklindančios medžiagoje išilgai magnetinio lauko jėgų linijų, poliarizacijos plokštumos sukimas. Poliarizacijos plokštumos sukimo… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    эффект Фарадея - Faradėjaus efektas statusas T sritis fizika atitikmenys: angl. Faraday effect vok. Faraday Effekt, m rus. эффект Фарадея, m pranc. effet Faraday, m … Fizikos terminų žodynas

    эффект Фарадея - один из эффектов магнитооптики, заключающийся во вращении плоскости поляризации электромагнитного излучения (например, света), распространяющегося в веществе вдоль силовых линий постоянного магнитного поля, проходящих через это… …

    Эффект Фарадея (продольный магнитооптический эффект Фарадея) магнитооптический эффект, который заключается в том, что при распространении линейно поляризованного света через вещество, находящееся в магнитном поле, наблюдается вращение плоскости… … Википедия

    Эффект Керра, или квадратичный электрооптический эффект явление изменения значения показателя преломления оптического материала пропорционально второй степени напряженности приложенного электрического поля. В сильных полях наблюдаются… … Википедия

    Эффект - 1. Результат, следствие каких либо причин, действий. 2. В естественных науках явление (закономерность), часто называют именем открывшего этот эффект ученого (например, эффект Холла, эффект Фарадея, эффект Томсона и т. п.): Смотри также:… … Энциклопедический словарь по металлургии

    эффект Холла - возникновение поперечного электрического поля и разности потенциалов в металле или полупроводнике, по которому проходит электрический ток, при помещении его в магнитное поле, перпендикулярно к направлению тока. Открыт американским… … Энциклопедический словарь по металлургии электронная книга


Измерение высокого импульсного напряжения и больших импульсных токов

Вступление

Современная практика и научные исследования требуют измерений высоких и сверхвысоких напряжений - до 10 МВ и больших токов - до 1¸2 МА. Напряжения и токи при этом могут быть постоянными, переменными, и импульсными с длительностью импульсов от долей микросекунд до нескольких десятков миллисекунд. Измерение больших постоянных токов - до 200¸500 кА широко используется в устройствах электролиза алюминия. Большие переменные токи - до 150¸200 кА имеют место в мощных дуговых электропечах. Работают линии электропередачи с напряжением 1,2¸1,5 МВ, проектируются линии передачи и энергетические устройства на более высокие напряжения. В термоядерных установках токи достигают сотен килоампер.

В ряде случаев необходимо проводить измерения при сверхнизких и высоких температурах, например, в криотурбогенераторах или криомодулях высокоскоростных транспортных средств на магнитной подушке, при исследовании плазменных и термоядерных источников энергии.

Электрооптические методы измерений высоких напряжений и больших токов

Быстрое развитие линий электропередачи и электрофизических устройств высокого и сверхвысокого напряжения (1200 кВ и выше) обусловило появление новых методов измерений, не требующих создания дорогостоящих и громоздких изоляционных устройств на полное рабочее напряжение. Перспективными являются электрооптические методы, основанные на преобразовании измеряемых электрических величин в параметры оптического излучения и применении оптических каналов связи для передачи измерительной информации из зоны высокого напряжения на низковольтную часть измерительного устройства. Преимуществами этих методов являются высокое быстродействие, защищенность от электромагнитных помех, а также надежная естественная электрическая изоляция между высоковольтной и вторичной измерительными цепями вследствие их полной электрической развязки.



Электрооптические методы разделяются на методы с внутренней модуляцией, при которых сигнал измерительной информации непосредственно воздействует на источник оптического излучения, изменяя параметры его излучения, и методы с внешней модуляцией, основанные на воздействии измеряемой величины непосредственно на оптическое излучение от внешнего стабильного источника.

Рис. 1.

При измерении методами с внутренней модуляцией (рис. 1) источник оптического излучения 2 (например, светодиод) и первичный преобразователь 1 (шунт, измерительный трансформатор и др.) находятся под высоким напряжением, а приемник оптического излучения 4 и вторичное измерительное устройство 5 имеют потенциал Земли. В качестве оптического канала связи 3 между источником и приемником излучения применяются высоковольтные волоконные жесткие или гибкие световоды, которые обеспечивают надежную изоляцию измерительных устройств от высоковольтной цепи.

Использование эффект Фарадея

Методы с внешней модуляцией основаны на использовании электрооптических и магнитооптических эффектов, главным образом электрооптических эффектов Керра и Поккельса - для измерения напряженности электрического поля и напряжения, а также магнитооптического эффекта Фарадея - для измерения токов.

Время релаксации, свойственное электро- и магнитооптическим эффектам, составляет менее 10 -10 с, поэтому на основе этих эффектов можно создать быстродействующие средства измерений постоянных, переменных и импульсных токов и напряжений, а также современные быстродействующие устройства защиты.

Использование эффекта Фарадея

Эффект Фарадея заключается во вращении плоскости поляризации линейно поляризованного света в оптически активных веществах под действием магнитного поля. Угол поворота плоскости поляризации света

где C B - постоянная Верде; l - длина пути света в веществе; В - магнитная индукция.

Измеряя угол поворота плоскости поляризации света, можно определить индукцию магнитного поля или силу тока, если преобразователь поместить в магнитном поле измеряемого тока.

Рис. 2.

Уравнение, записанное выше, справедливо для составляющей индукции В l , направленной вдоль пути света. Знак угла Q зависит от направления вектора магнитной индукции, но не зависит от направления света, что позволяет увеличить угол Q, если свет многократно пропускать через ячейку Фарадея. Как и в других методах, основанных на измерении магнитной индукции поля, создаваемого измеряемым током, при использовании эффекта Фарадея основными составляющими погрешности измерения тока являются погрешность преобразования измеряемого тока в магнитную индукцию и погрешность измерения магнитной индукции.

При использовании эффекта Фарадея измерение магнитной индукции сводится к измерению поворота плоскости поляризации света, которое обычно осуществляя методами прямого или уравновешивающего преобразования.

При применении метода прямого преобразования свет от лазера 1 направляется к преобразователю Фарадея 8 (рис. 2).

При этом поляризатор 2 и анализатор 4 могут быть расположены непосредственно у магнитооптического образца, что позволяет использовать оптические каналы связи 5 в виде обычных волоконных световодов.

Выходным сигналом устройств, построенных на основе метода прямого преобразования, является фототок или выходное напряжение.

где R н - сопротивление нагрузки фотоприемника; S Ф - чувствительность фотоприемника; J 2 - интенсивность светового потока на входе фотоприемника, которая в соответствии с законом Малюса равна

Рис. 3, а. Рис 3, б.
Рис. 3, в.

здесь J 1 - интенсивность света на входе анализатора; j - угол между поляризатором и анализатором; Q - угол поворота плоскости поляризации, При j=45°

или при малых углах Q

При углах Q=7° погрешность линейности составляет 1%.

На рис. 3 показаны различные виды магнитооптических преобразователей Фарадея. Самый простой преобразователь состоит из магнитооптического элемента 2, располо­женного у провода 1 с измеряемым током (рис. 3, а). Уменьшения влияния внешних магнитных полей и увеличения чувствительности средств измерений, основанных на использовании эффекта Фарадея, к току можно достигнуть путем увеличения коэффициента преобразования


Рис. 4, а.

Рис. 4, б.
Рис. 4, в. Рис. 4, г.

В качестве рабочего вещества для магнитооптических преобразователей применяются стекла, содержащие оксид свинца (флинты, кроны) и плавленый кварц. Особенно большую постоянную Верде имеют пленки из феррита-граната, удельное фарадеевское вращение плоскости поляризации света в которых на два-три порядка больше, чем в стеклах.

Даже в прекрасно взаимной системе фазовый сдвиг Саньяка не только точный эффект необратимости. В частности благодаря магнитно оптическому эффекту Фарадея продольное магнитное поле В изменяет фазу циркулярно поляризованной волны, суммарно определяемой коэффициентом Верде V среды. Знак этого фазового сдвига зависит от левой или правой руки характера круговой поляризации, а также от относительного направления поля и вектора распространения света. Хорошо известно, что этот фазовый сдвиг может проявить себя как изменение в ориентации линейно поляризованного света, вытекающей из противоположного сдвига фаз сораспространяющегося лево- и праворучных циркулярно-поляризованных компонентов: , где L – длина среды. Также она может определяться как разность фаз в кольцевом волоконном интерферометре, в котором идентичные циркулярно поляризованные волны противонаправлены вокруг катушки (Рисунок. 7.1). Как показано в приложении 1, эта разность фаз равна двойному углу поворота Фарадея :

(7.1)

Сначала кажется, что общий эффект Фарадея по всему контуру пропорционален линейному интегралу от В по этому контуру. Для замкнутого контура результат должен быть отличен от нуля согласно закону Ампера, только если этот контур включает проводящий электрический ток. Конфигурация тороидального замкнутого контура была использована для демонстрации электрического тока в волоконном датчике , но волоконно- оптический гироскоп не должны быть чувствительным к магнитным полям окружающей среды, из-за отсутствия пересекающихся электрических токов. Однако это действительно верно, только если состояние поляризации сохраняется вдоль волокна. Фазовый сдвиг Фарадея, накопленный вдоль вектора элементарной длины dz , является

(7.2)

ΔФ F =2 B·L
(a)
(b)


где – коэффициент, который зависит от состояния поляризации. Он равен нулю для линейной поляризации и ± 1 для круговых поляризаций. Он имеет промежуточные значения для эллиптических поляризаций. Общая разность фаз между обеими противонаправленными волнами представлена соотношением

(7.3)

которое может быть отличным от нуля, даже если линейный интеграл равен нулю, поскольку не постоянна. Это связано с изменением поляризации вдоль волокна, вытекающее из остаточного двулучепреломления . Конфигурации, использующие двулучепреломление, вызванное изгибом, повышают чувствительность к внешним магнитным полям, что продемонстрировано на магнитометре с кольцевым интерферометром .

Если предположить, что влияние магнитного поля земли B земли было проинтегрировано конструктивно вдоль всего волокна длиной L , максимальная взаимообратная разность фаз будет

(7.4)

Постоянная Верде V имеет зависимость от длины волны λ –2 равна 2 рад·м – 1·Т –1 на 0,85 мкм, а B земли обычно составляет 0,5G (или 5·10 –5 Тесла), будет достигать 0,2 рад на 1 км длины катушки. Экспериментально было отмечено , что существует фактор компенсации примерно 10 3 в гироскопе, использующем обычное волокно, который дает погрешность измерения, приблизительно эквивалентную скорости вращения земли (т.е. 15 град/ч).

Обратите внимание, что эффект Фарадея также приводится в научной и учебной литературе в зависимости от поля Н. Поскольку в диамагнитных материалах, подобных кремнезему, В и Н пропорциональны, и относительная магнитная проницаемость близка к единице, единица измерения постоянной Верде V достигается путем умножения его "B-значение" при ; то есть «H- значение» V это 2,5·10 –6 рад А –1 на длине волны от 0,85 мкм.

Использование сохраняющего поляризацию волокна очень полезно для уменьшения необратимости, вызываемой двулучепреломлением, также для уменьшения магнитной зависимости, и на практике остаточная фазовая ошибка Фарадея становится порядка 1 мрад для 1 G (10 –4 Тесла). Однако эффект не является полностью обнуляющим вне связи с остаточным вращением осей двулучепреломления практических волокон . Этот имеющийся опыт очень высоких напряжений, которые, как правило, дают геликоидальную фигуру для напряженных стержней, и вызванного напряжениями высокого двулучепреломления волокон, используется для сохранения поляризации с медленно меняющейся ориентацией их основных осей .

Когда поворачиваются основные оси в волокне с линейным двулучепреломлением, собственные моды поляризации не находятся в состоянии линейной поляризации. Это может наблюдаться на сфере Пуанкаре (см. приложение 2), определяющей "покой" в связи со ссылкой, вызывающей вращение основных осей на темп вращения t w (в рад/м). В этом сосотоянии покоя линейное двулучепреломление представлено стабильным экваториальным вектором , но есть дополнительный вектор кругового двулучепреломления , направленный дволь полярной оси, учитывающий изменение системы отсчета (Рисунок 7.2). Величина соотвествует t w , но он соответствует противоположному направлению вращения. Общее двулучепреломление получается просто как векторная сумма . Величина гораздо меньше, чем , в противном случае поляризации вообще не будет сохранена; таким образом, два стабильных ортогональных состояния поляризации, слегка эллиптической, соответствуют пересечению со сферой Пуанкаре. Возвращаясь назад к "лабораторной" схеме двух состояний, сохраняющих ту же эллиптическую постоянную, но их мелкие и крупные оси вращаются относительно основных осей двулучепреломляющего волокна. Поляризация "медленно смещается" при повороте осей двулучепреломления и становится немного эллиптической.

В кольцевом интерферометре, используя такие сохраняющие поляризацию волокна, можно считать, что магнитное поле имеет незначительную зависимость от состояния поляризации в двух противоположных направлениях. Тем не менее, она модифицирует фазы противонаправленных волн в зависимости от коэффициента α р , равного эллиптическому состоянию; то есть, соотношение Накопленная разность фаз Фарадея, поэтому

(7.5)

В результате для круглой катушки радиусом R это дает

(7.6)

где – угол вектора В с базовой осью. Эта формула эквивалентна "синхронной демодуляции" из степени изгиба t w (z ) как «частота» (2πR ) –1 из интегрального "времени" L .

Остаточная магнитная зависимость подходит, поэтому, от пространственных компонентов частоты t w (z), равных обратному периметру 2πR в пределах ширины полосы пропускания, равной обратной общей длине катушки. Если предположить, что t w (z) является случайной функцией с постоянной плотностью мощности, могут быть применены обычный результаты обнаружения белого шума, с применением усилителя.

Если приложению требуется очень низкая магнитная зависимость, это позволяет получить дальнейшее совершенствование одного-двух порядков, измерительную катушку экранируют материалом с высокой магнитной проницаемостью, таким, как µ–метал. Обратите внимание на то, что, в связи с λ –2 зависимостью эффекта Фарадея, использование больших длин волн (т.е. 1,3 или 1,55 мкм) снижает фазовую ошибку с коэффициентом 3-4, по сравнению с 0,85 мкм для аналогичных дефектов волокон.

Как мы уже видели, сохраняющие поляризацию волокна обеспечивают лучшее сокращение Фарадевской необратимости, чем обычные волокна. Вместе с тем было показано, что если расположить дополнительный деполяризатор между поляризатором и соединителем катушки в дополнение к деполяризатору катушки, необратимость Фарадея также значительно сокращается даже с катушкой из обычного волокна .

Нелинейный эффект Керра

Другой важный случай необратимого эффекта может возникнуть вследствие нелинейного оптического эффекта Керра . Взаимности действительно основываются на линейном уравнении переноса (см. раздел 3.1), но дисбаланс в уровнях мощности противонаправленных волн может производить небольшие несогласованные разности фаз, в связи с распространением нелинейных, вызванных высокой оптической плотностью мощности в очень маленьком кремниевом ядре волокна. Медленные вариации в разделении коэффициента мощности делителя, возбуждение измерительной катушки может поэтому привести непосредственно к смещению дрейфа. Экспериментально разница мощности в 1 мкВт (например, вытекающая из 10 –3 дисбаланса разделения источника в 1мкВт) дает несогласованность с разностью коэффициентов менее, чем 10 –15 ; но при интегрировании вдоль нескольких сотен метров волокна это производит разность фаз в несколько 10 –5 рад, что по крайней мере на два порядка выше предела теоретической чувствительности. Она может быть сокращена, простым уменьшением мощности в волокне, но это приведет к увеличению влияния относительного шума детектирования.

В результате ошибки, индуцируемой эффектом Керра, вызванным скоростью вращения, на самом деле в результе сложного процесса смешивания четырех волн, и не просто самозависимая интенсивность распространения постоянной каждой противонаправлленной волны. Это также зависит от интенсивности противоположных волн . В линейной среде вектор электрической поляризации P определяется как (см. приложение I)

, (7.7)

но когда волна имеет высокую плотность энергии (т.е. большое Е поле), появляется дополнительный член нелинейной зависимости третьего порядка восприимчивость и скаляр в квадрате |E | 2 электрического поля и P становится

(7.8)

Относительная диэлектрическая проницаемость меняется на

(7.9)

и фактический показатель преломления имеет дополнительный нелинейный член

. (7.10)

В кольцевом интерферометре, где два поля E 1 и E 2 распространяются в противоположных направлениях, два вектора поляризации P 1 и Р 2 должны быть рассмотрены в каждом направлении распространения. Бывшие взаимосвязи между векторами Р и Е применялись для одной волны, но теперь каждую противонаправленную волну нельзя считать независимой. Вектор общей поляризация Р 1 + P 2 относится к общему полю Е 1 + Е 2 и, следовательно,

Потенциальный источник несогласованности вытекает из члена , который представляет интенсивность постоянной волны, в результате интерференции между обоими противонаправленными полями Е 1 и Е 2 .

При условии непрерывных монохроматических волн с одинаковым состоянием линейной поляризации и одинаковой частотой ω и постоянными противоположного направления распространения β и –β, имеем

, , (7.12)

где z – пространственная продольная координата вдоль волокон катушки. После это дает

(7.1З)

Первые два условия этого отношения зависят от суммы квадратов полей (т.е. интенсивностей) двух волн и поэтому дают нелинейные коэффициенты изменения для Е 1 и Е 2 в каждом противоположном направлении. С другой стороны два последних члена индуцируют несогласованность, поскольку

(7.14)

и точно так же,

Влияние членов при пространственной частоте 3β или –3β дает среднюю величину в распространении, но два других члена β и –β соответствущих фаз дают постоянное изменение чувствительности при распространении волн. Каждый вектор поляризации является на самом деле

Это дает различные нелинейные изменения показателя преломления для каждого противоположного направления:

и разность несогласованного показателя преломления:

(7.18)

Исходя из единой интенсивности распределения в области ядра диаметром около 5 мкм, эта индуцируемая эффектом Керра разность может быть оценена значением в кремнии в зависимости от разности мощности ΔP (пропорциональной ) между обоими направлениями, как :

Эта разница очень мала, но для эффекта Саньяка при интегрировании по всей длине L волокна катушки дает значительный рост разности фаз . На длине волны от 0,633 мкм :

Этот анализ показывает, что результаты несогласованности эффекта Керра следуют исключительно из-за образования нелинейного показателя дифракционной решетки, из-за интерференции между двумя противонаправленными волнами внутри волокон, которую дает постоянная волна. Как установлено раннее в , если различие этой постоянной волны вымывается в некоторых процессах, несогласованность следует уменьшить. Этот важный момент объясняет, почему использование широкополосных источников с короткой длиной когеренции значительно снижает несогласованность Керра: постоянная волна сопоставима только на расстоянии, равном длине когерентности L c в середине волоконной катушки (Рисунок 7.3), и поэтому эффект несогласованной разности показателя преломления интегрирован только вдоль L c , а не вдоль всего волокна длиной L !

Отмена несогласованности Керра с широкополосным источником первоначально объяснили статистикой колебаний интенсивности света . Фактически это оригинальное объяснение рассматривает случай интенсивности модулированной волны, который дает нелинейные возмущения показателя преломления, зависящие от времени t и координаты z в волокне:

Важной особенностью этих уравнений, как мы уже видели, является эффект пересечения мощности одной волны дважды, ее самоэффект. Использование в прямоугольной модуляции интенсивности волны монохроматического источника впервые предложено для снижения несогласованности Керра в работе . В этом случае скрещенные эффекты присутствуют только тогда, когда обе противонаправленные интенсивности совпадают (Рисунок 7.4) (т.е. половину времени), в то время как самоэффект представлен все время. Таким образом, второй фактор эффекта пересечения уменьшает усредненное значение единства, которое эффективно отменяет несогласованность, так как осцилляции средней фазы становятся идентичными в обоих направлениях.

Такого рода компенсации не ограничиваются прямоугольными волнами, и это применяется, если среднее значение <I > модулируемой интенсивности равно его стандартному отклонению . Благодаря центральной предельной теореме, поляризация широкополосного источника имеет случайные интенсивности с экспоненциальной вероятностью распределения:

(7.21)

и это выполняет требование , которое обеспечивает отсутствие несогласованности, вызванной эффектом Керра.

Однако сходство в членах когеренции между нелинейным эффектом и других когерентно связанных линейных эффектов ограничено использованием широкополосных источников с непрерывным распространением света, что разрушает контраст стоячих волн, но гарантирует, что обе противонаправленные интенсивности света являются постоянными в волокне. Очень короткие импульсы также могут ограничивать эффект когерентного обратного отражения, обратного рассеяния и несогласованности поляризации, но для проблемы нелинейности каждого противонаправленного импульса будет испытываться главным образом самоэффект, который даст несогласованность с дисбалансом мощности. Кроме того для одной средней мощности нелинейность далее увеличится, поскольку это зависит от пика мощности, которые намного выше в случае возникновения пульсации.

Обратите внимание, что было бы интересно изучить эффект дополнительной фазовой модуляции, особенно в средней части петли, чтобы увидеть, если это также возможно, это означает, что уменьшить контрастность стоячих волн и установить связь несогласованного Керра, несмотря на источник высокой когерентности.

Arditty, д. х., ю. Bourbin, м. Papuchon и C. Puech, "Датчик тока с использованием самой современной волоконно-оптической интерферометрической техники," Proceedings of ИООК, документ WL3, 1981.

Бома, К., К. Petermann и е. Weidel, "Чувствительность волоконного гироскопа к окружающим магнитным полям" оптика письма, том 7, 1982, pp. 180-182 (MS SPIE 8, стр. 328-330).

Шиффнер, г., б. Nottbeck и г. Schroner, "Волоконно-оптический датчик вращения: анализ эффектов ограничения чувствительности и точности" Springer серии в оптический наук, Vol. 32, 1982 г., стр. 266-274.

Берг, р. а., г. С Лефевр и H. J. шоу, "Многомодовый волоконно-оптический гироскоп" Springer серии в оптический наук, Vol. 32, 1982 г., стр. 252-255.

Берг, р. а., г. С Лефевр и H. J. шоу, "Геометрическая волоконная конфигурация для изоляторов и магнитометров," Springer серии в оптический наук, Vol. 32, 1982, pp. 400-405.

Хотате, K. и K. Tabe, "Дрейф оптического волоконного гироскопа, причиненный эффектом Фарадея: влияние магнитного поля Земли" прикладной оптики, Vol. 25, 1986, pp. 1086-1092 (MS SPIE 8, стр. 331-337).

Марроне, я. м., C. а. Villaruel, н. д. Фриго и а. Dandridge, "Внутреннее вращение осей двулучепреломления в сохраняющих поляризацию волокнах" оптика письма, том 12, 1987, pp. 60-62.

Блейк, J., "Чувствительность к магнитному полю деполяризованного волоконно-оптического гироскопа" SPIE труды, том 1367, 1990, pp. 81-86.

Иезекииль, S., д. л. Дэвисом и р. в. Hellwartli, "Интенсивность зависящего несогласованного сдвига фаз в волоконно-оптическом гироскопе" Springer серии в оптический наук, Vol. 32, 1982, pp. 332-336 (MS SPIE 8, стр. 308-312).

Каплан, а. и. п. Meystre, "Большое повышение эффекта Саньяка в нелинейном кольцевом резонаторе и смежные эффекты" Springer серии в оптический наук, Vol. 32, 1982, pp. 375-385.

Берг, р. а., б. Culshaw, С. С. Катлер, H С Лефевр и H. J. шоу, "Источник статистик и эффект Керра в волоконно-оптических гироскопах" оптика письма, том 7, 1982, pp. 563-565 (MS SPIE 8, стр. 313-315).

Petermann, K., "Зависящий от интенсивности несогласованный сдвиг фаз в волоконно-оптических гироскопах для источников света с низким уровнем когерентности" оптика письма, том 7, 1982, pp. 623-625 (MS SPIE 8, стр. 322-323).

Берг, р. а., г. С Лефевр и H. J. шоу, "Компенсация оптического эффекта Керра в волоконно-оптических гироскопах," письма оптики. Индекс vol.7, 1982, pp. 282-284 (MS SPIE 8, pp. 316-318).

Продольный магнитооптический эффект Фарадея

Основные свойства эффекта

Продольный магнитооптический эффект состоит в повороте плоскости поляризации луча света, проходящего через прозрачную среду, находящуюся в магнитном поле. Этот эффект был открыт в 1846 году. Открытие магнитооптического эффекта долгое время имело значение в чисто физическом аспекте, но за последние десятилетия оно дало много практических выходов. Также были открыты другие магнитооптические эффекты, в частности, хорошо известный эффект Зеемана и эффект Керра, проявляющийся в повороте плоскости поляризации луча, отраженного от намагниченной среды. Наш интерес к эффектам Фарадея и Керра обусловлен их применением в физике, оптике и электронике. К ним относятся:

    определение эффективной массы носителей заряда или их плотности в полупроводниках;

    амплитудная модуляция лазерного излучения для оптических линий связи и определение времени жизни неравновесных носителей заряда в полупроводниках;

    изготовление оптических невзаимных элементов;

    визуализация доменов в ферромагнитных пленках;

    магнитооптическая запись и воспроизведение информации как в специальных, так и бытовых целях.

Принципиальная схема устройства для наблюдения и многих применений эффекта Фарадея показана на рисунке 1. Схема состоит из источника света, поляризатора, анализатора и фотоприемника. Между поляризатором и анализатором помещается исследуемый образец. Угол поворота плоскости поляризации отсчитывается по углу поворота анализатора до восстановления полного гашения света при включенном магнитном поле. Интенсивность прошедшего пучка определяется законом Малюса

На этом основана возможность использования эффекта Фарадея для модуляции пучков света. Основной закон, вытекающий из измерений угла поворота плоскости поляризации a , выражается формулой

a = vHl

где H - напряженность магнитного поля, l - длина образца, полностью находящегося в поле и v - постоянная Верде, которая содержит в себе информацию о свойствах, присущих исследуемому образцу, и может быть выражена через микроскопические параметры среды.

Основная особенность магнитооптического эффекта Фарадея состоит в его невзаимности, т.е. нарушении принципа обратимости светового пучка. Опыт показывает, что изменение направления светового пучка на обратное (на пути "назад") дает такой же угол поворота и в ту же сторону, как на пути "вперед". Поэтому при многократном прохождении пучка между поляризатором и анализатором эффект накапливается. Изменение направления магнитного поля, напротив, изменяет направление вращения на обратное. Эти свойства объединяются в понятии "гиротропная среда".

Объяснение эффекта циркулярным магнитным двупреломлением

Согласно Френелю, поворот плоскости поляризации является следствием циркулярного двупреломления. Циркулярная поляризация выражается функциями для правого вращения (по часовой стрелке) и для вращения против часовой стрелки. Линейная поляризация может рассматриваться как результат суперпозиции волн с циркулярной поляризацией с противоположным направлением вращения. Пусть показатели преломления для правой и левой циркулярной поляризации неодинаковы. Введем средний показатель преломления n и отклонение от него. Тогда получим колебание с комплексной амплитудой

что соответствует вектору E, направленному под углом a к оси X. Этот угол и есть угол поворота плоскости поляризации при циркулярном двупреломлении, равный

Вычисление разности показателей преломления

Из теории электричества известно, что система зарядов в магнитном поле вращается с угловой скоростью

которая называется скоростью прецессии Лармора.

Представим себе что мы смотрим навстречу циркулярно поляризованному лучу, идущему через среду, вращающуюся с частотой

Лармора; если направления вращения вектора E в луче и Ларморовского вращения совпадают, то для среды существенна относительная угловая скорость ,а если эти вращения имеют разные направления, то относительная угловая скорость равна .

Но среда обладает дисперсией и мы видим, что

Отсюда получаем формулу для угла поворота плоскости поляризации

и для постоянной Верде

Практические применения эффекта Фарадея

Эффект Фарадея приобрел большое значение для физики полупроводников при измерениях эффективной массы носителей заряда. Эффект Фарадея очень полезен при исследованиях степени однородности полупроводниковых пластин, имеющих целью отбраковку дефектных пластин. Для этого проводится сканирование по пластине узким лучом-зондом от инфракрасного лазера. Те места пластины, в которых показатель преломления, а следовательно, и плотность носителей заряда, отклоняются от заданных, будут выявляться по сигналам фотоприемника, регистрирующего мощность прошедшего через пластину излучения.

Рассмотрим теперь амплитудные и фазовые невзаимные элементы (АНЭ и ФНЭ) на основе эффекта Фарадея. В простейшем случае оптика АНЭ состоит из пластинки специального магнитооптического стекла, содержащего редкоземельные элементы, и двух пленочных поляризаторов (поляроидов). Плоскости пропускания поляризаторов ориентированы под углом 45 градусов друг к другу. Магнитное поле создается постоянным магнитом и подбирается так, чтобы поворот плоскости поляризации стеклом составлял 45 градусов.

Тогда на пути "вперед" вся система будет прозрачной, а на пути "назад" непрозрачной, т.е. она приобретает свойства оптического вентиля. ФНЭ предназначен для создания регулируемой разности фаз двух линейно поляризованных встречных волн. ФНЭ нашел применение в оптической гирометрии. Он состоит из пластинки магнитооптического стекла и двух пластинок, вносящих разность фаз Pi/2 и -Pi/2 .

Магнитное поле, как и в АНЭ создается постоянным магнитом. На пути "вперед" линейно поляризованная волна, прошедшая пластинку преобразуется в циркулярно поляризованную с правым вращением, затем проходит магнитооптическую пластинку с соответствующей скоростью и далее через вторую пластинку, после чего линейная поляризация восстанавливается. На пути "назад" получается левая поляризация и эта волна проходит магнитооптическую пластинку со скоростью, отличающейся от скорости правой волны, и далее преобразуется в линейно поляризованную. Введя ФНЭ в кольцевой лазер, мы обеспечиваем разность времен обхода контура встречными волнами и вытекающую отсюда разность их длин волн.

В непосредственной близости к собственной частоте осцилляторов эффект Фарадея описывается более сложными закономерностями. В уравнении движения осциллирующего электрона необходимо учитывать затухание

Необходимо отметить, что для циркулярно поляризованных волн, распространяющихся вдоль магнитного поля, дисперсионная кривая и спектральный контур линии поглощения имеют для данной среды тот же вид, что и при отсутствии магнитного поля, отличаясь только сдвигом по шкале частот.

На рисунке 3 штриховыми линиями показаны графики функций , а их разность - сплошной линией. Видно, что в окрестности Wo дважды изменяется знак эффекта Фарадея: в интервале частот вблизи Wo поворот направления поляризации происходит в отрицательную сторону, а вне этого интервала - в положительную. Однако следует иметь в виду, что в данном случае эффект не сводится только к повороту направления поляризации падающей волны. В окрестности Wo существенно поглощение света, причем при данном значении W коэффициенты затухания для циркулярно поляризованных составляющих падающей волны имеют разные значения (круговой дихроизм). Поэтому после прохождения через образец амплитуды этих составляющих не равны и при их сложении получается эллиптически поляризованный свет.

Важно сознавать, что в эффекте Фарадея магнитное поле влияет на состояние поляризации света лишь косвенно, изменяя характеристики среды, в которой распространяется свет. В вакууме магнитное поле никакого влияния на свет не оказывает.

Обычно угол поворота направления поляризации очень мал, но благодаря высокой чувствительности экспериментальных методов измерения состояния поляризации эффект Фарадея лежит в основе совершенных оптических методов определения атомных констант.

http://ofap.ulstu.ru/res/puevm/PAGE13.HTM

Слайд 2

История возникновения эффекта Фарадея

Слайд 3

Эффект Фарадея – вращение плоскости поляризации линейно поляризованного света при прохождении его через вещество, помещенное в магнитное поле, вдоль поля. Открыт Майклом Фарадеем в 1845 году. Майкл Фарадей (1791-1867 гг.)

Слайд 4

Первоначальное объяснение эффекта Фарадея дал Д. Максвелл в своей работе «Избранные сочинения по теории электромагнитного поля», где он рассматривает вращательную природу магнетизма. Опираясь в том числе на работы профессора У. Томсона, который подчеркивал, что причиной магнитного действия на свет должно быть реальное (а не воображаемое) вращение в магнитном поле, Максвелл рассматривает намагниченную среду как совокупность «молекулярных магнитных вихрей».

Слайд 5

Основные свойства эффекта

  • Слайд 6

    Определение эффективной массы носителей заряда или их плотности в полупроводниках; Амплитудная модуляция лазерного излучения для оптических линий связи и определение времени жизни неравновесных носителей заряда в полупроводниках; Изготовление оптических невзаимных элементов; Визуализация доменов в ферромагнитных пленках; Магнитооптическая запись и воспроизведение информации как в специальных, так и бытовых целях.

    Слайд 7

    Принципиальная схема устройства для наблюдения и многих применений эффекта Фарадея показана на рисунке 1. Схема состоит из источника света, поляризатора, анализатора и фотоприемника. Между поляризатором и анализатором помещается исследуемый образец. Угол поворота плоскости поляризации отсчитывается по углу поворота анализатора до восстановления полного гашения света при включенном магнитном поле.

    Слайд 8

    Рисунок 1 - Схема наблюдения эффекта Фарадея

  • Слайд 9

    Интенсивность прошедшего пучка определяется законом Малюса На этом основана возможность использования эффекта Фарадея для модуляции пучков света. Основной закон, вытекающий из измерений угла поворота плоскости поляризации α, выражается формулой где H - напряженность магнитного поля, l - длина образца, полностью находящегося в поле и V - постоянная Верде.

    Слайд 10

    Основная особенность магнитооптического эффекта Фарадея состоит в его невзаимности, т.е. нарушении принципа обратимости светового пучка. Опыт показывает, что изменение направления светового пучка на обратное (на пути "назад") дает такой же угол поворота и в ту же сторону, как на пути "вперед". Поэтому при многократном прохождении пучка между поляризатором и анализатором эффект накапливается. Изменение направления магнитного поля, напротив, изменяет направление вращения на обратное. Эти свойства объединяются в понятии "гиротропная среда".

    Слайд 11

    Объяснение эффекта циркулярным магнитным двупреломлением

  • Слайд 12

    Согласно Френелю, поворот плоскости поляризации являетсяследствием циркулярного двупреломления. Циркулярная поляризация выражается функциями для правого вращения /по часовой стрелке/ и для вращения против часовой стрелки. Линейная поляризация может рассматриваться как результат суперпозиции волн с циркулярной поляризацией с противоположным направлением вращения.

    Слайд 13

    Пусть показатели преломления для правой и левой циркулярной поляризации неодинаковы. Введем средний показатель преломления nи отклонение от него ∆n . Тогда получим колебание с комплексной амплитудой что соответствует вектору Е, направленному под углом α к оси X. Этот угол и есть угол поворота плоскости поляризации при циркулярном двупреломлении, равный

    Слайд 14

    Вычисление показателей преломления

  • Слайд 15

    Из теории электричества известно, что система зарядов в магнитном поле вращается с угловой скоростью, которая называется скоростью прецессии Лармора. Представим себе что мы смотрим навстречу циркулярно поляризованному лучу, идущему через среду, вращающуюся с частотой Лармора; если направления вращения вектора в луче и Ларморовского вращения совпадают, то для среды существенна относительная угловая скорость,

    Слайд 16

    а если эти вращения имеют разные направления, то относительная угловая скорость равна. Но среда обладает дисперсией и мы видим, что Отсюда получаем формулу для угла поворота плоскости поляризации и для постоянной Верде

    Слайд 17

    Практические применения эффекта Фарадея

  • Слайд 18

    Эффект Фарадея приобрел большое значение для физики полупроводников при измерениях эффективной массы носителей заряда. Эффект Фарадея очень полезен при исследованиях степени однородности полупроводниковых пластин, имеющих целью отбраковку дефектных пластин. Для этого проводится сканирование по пластине узким лучом-зондом от инфракрасного лазера. Те места пластины, в которых показатель преломления, а следовательно,

    Слайд 19

    и плотность носителей заряда, отклоняются от заданных, будут выявляться по сигналам фотоприемника, регистрирующего мощность прошедшего через пластину излучения. Рассмотрим теперь амплитудные и фазовые невзаимные элементы /АНЭ и ФНЭ/ на основе эффекта Фарадея. В простейшем случае оптика АНЭ состоит из пластинки специального магнитооптического стекла, содержащего редкоземельные элементы, и двух пленочных поляризаторов /поляроидов/.

    Слайд 20

    Плоскости пропускания поляризаторов ориентированы под углом 45° друг к другу (рисунок 2). Магнитное поле создается постоянным магнитом и подбирается так, чтобы поворот плоскости поляризации стеклом составлял 45° . Тогда на пути "вперед" вся система будет прозрачной, а на пути "назад" непрозрачной, т.е. она приобретает свойства оптического вентиля. ФНЭ предназначен для создания регулируемой разности фаз двух линейно поляризованных встречных волн. ФНЭ нашел применение в оптической гирометрии.

    Слайд 21

    Слайд 22

    Он состоит из пластинки магнитооптического стекла и двух пластинок λ/4 , вносящих разность фаз π/2 и -π/2 . Магнитное поле, как и в АНЭ создается постоянным магнитом. На пути "вперед" линейно поляризованная волна, прошедшая пластинку преобразуется в циркулярно поляризованную с правым вращением, затем проходит магнитооптическую пластинку с соответствующей скоростью и далее через вторую пластинку λ/2, после чего линейная поляризация восстанавливается.

    Слайд 23

    На пути "назад" получается левая поляризация и эта волна проходит магнитооптическую пластинку со скоростью, отличающейся от скорости правой волны, и далее преобразуется в линейно поляризованную. Введя ФНЭ в кольцевой лазер, мы обеспечиваем разность времен обхода контура встречными волнами и вытекающую отсюда разность их длин волн. В непосредственной близости к собственной частоте осцилляторов эффект Фарадея описывается более сложными закономерностями. В уравнении же движения осциллирующего электрона необходимо еще учитывать затухание.

    Слайд 24

    Заключение

  • Слайд 25

    Важно сознавать, что в эффекте Фарадея магнитное поле влияет на состояние поляризации света лишь косвенно, изменяя характеристики среды, в которой распространяется свет. В вакууме магнитное поле никакого влияния на свет не оказывает. Обычно угол поворота направления поляризации очень мал, но благодаря высокой чувствительности экспериментальных измерений состояния поляризации эффект Фарадея лежит в основе совершенных оптических методов определения атомных констант.

    Посмотреть все слайды

  • Loading...Loading...